FP2 Integration

1. June 2010 qu. 3

Use the substitution
$$t = \tan \frac{1}{2}x$$
 to show that $\int_0^{\frac{1}{3}\pi} \frac{1}{1-\sin x} dx = 1 + \sqrt{3}$. [6]

2. June 2010 qu. 5

It is given that, for $n \ge 0$, $I_n = \int_0^{1/2} (1-2x)^n e^x dx$. $I_n = 2nI_{n-1} - 1.$ Prove that, for $n \ge 1$, [4]

(ii) Find the exact value of I_3 . [4]

3. Jan 2010 qu.6

(i)

(i) Express
$$\frac{4}{(1-x)(1+x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Show that
$$\int_{0}^{\frac{1}{\sqrt{3}}} \frac{4}{1-x^4} dx = \ln\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) + \frac{1}{3}\pi.$$
 [4]

June 2009 qu. 5 4.

It is given that
$$I = \int_0^{\frac{1}{2}\pi} \frac{\cos\theta}{1+\cos\theta} d\theta.$$

(i) By using the substitution
$$t = \tan \frac{1}{2}\theta$$
, show that $I = \int_0^1 \left(\frac{2}{1+t^2} - 1\right) dt$. [5]

(ii) Hence find *I* in terms of π . [2]

5. June 2009 qu. 6

Given that
$$\int_{0}^{1} \frac{1}{\sqrt{16+9x^{2}}} dx + \int_{0}^{2} \frac{1}{\sqrt{9+4x^{2}}} dx = \ln a$$
, find the exact value of *a*. [6]

6. June 2009 qu. 9

(i) It is given that, for non-negative integers
$$n$$
, $I_n = \int_0^{\frac{1}{2}\pi} \sin^n \theta d\theta$.

- Show that, for $n \ge 2$, $nI_n = (n-1)I_{n-2}$. [4]
- $r = \sin^3 \theta$, The equation of a curve, in polar coordinates, is for $0 \le \theta \le \pi$. (ii)
 - Find the equations of the tangents at the pole and sketch the curve. [4] (a)
 - Find the exact area of the region enclosed by the curve. [6] (b)

7. Jan 2009 qu.4

(i) By means of a suitable substitution, show that $\int \frac{x^2}{\sqrt{x^2 - 1}} dx$

can be transformed to
$$\int \cosh^2 \theta d\theta$$
. [2]

(ii) Hence show that
$$\int \frac{x^2}{\sqrt{x^2 - 1}} dx = \frac{1}{2} x \sqrt{x^2 - 1} + \frac{1}{2} \cosh^{-1} x + c.$$
 [4]

8. Jan 2009 qu.9

A curve has equation $y = \frac{4x - 3a}{2(x^2 + a^2)}$, where *a* is a positive constant.

- (i) Explain why the curve has no asymptotes parallel to the *y*-axis. [2]
- (ii) Find, in terms of a, the set of values of y for which there are no points on the curve. [5]

(iii) Find the exact value of
$$\int_{a}^{2a} \frac{4x - 3a}{2(x^2 + a^2)} dx$$
, showing that it is independent of *a*. [5]

[6]

9. June 2008 qu. 3

By using the substitution $t = \tan \frac{1}{2}x$, find the exact value of $\int_{0}^{\frac{1}{2}\pi} \frac{1}{2 - \cos x} dx$,

giving the answer in terms of π .

10. June 2008 qu. 5

It is given that, for $n \ge 0$, $I_n = \int_0^{\frac{1}{4}\pi} \tan^n x \, dx$.

(i) By considering $I_n + I_{n-2}$, or otherwise, show that, for $n \ge 2$, $(n-1)(I_n + I_{n-2}) = 1$. [4]

(ii) Find I_4 in terms of π . [4]

11. Jan 2008 qu.7

It is given that, for integers
$$n \ge 1$$
, $I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$

- (i) Use integration by parts to show that $I_n = 2^{-n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} dx$ [3]
- (ii) Show that $2nI_{n+1} = 2^{-n} + (2n-1)I_n$. [3]
- (iii) Find I_2 in terms of π . [3]

12. Jan 2008 qu.9

(i) Prove that
$$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$$
 [4]

(ii) Hence, or otherwise, find
$$\int \frac{1}{\sqrt{4x^2 - 1}} dx.$$
 [2]

(iii) By means of a suitable substitution, find
$$\int \sqrt{4x^2 - 1} \, dx$$
. [6]

13. <u>June 2007 qu. 5</u>

It is given that, for non-negative integers *n*, $I_n = \int_1^e (\ln x)^n dx$.

(i) Show that, for
$$n \ge 1$$
, $I_n = e - nI_{n-1}$. [4]

(ii) Find
$$I_3$$
 in terms of e.

14. Jan 2007 qu.5

It is given that, for non-negative integers *n*, $I_n = \int_0^{\frac{1}{2}\pi} x^n \cos x dx$

(i) Prove that, for
$$n \ge 2$$
, $\boldsymbol{I}_n = \left(\frac{1}{2}\pi\right)^n - n(n-1)\boldsymbol{I}_{n-2}$. [5]

(ii) Find I_4 in terms of π . [4]

15. Jan 2007 qu.7

(i) Express
$$\frac{1-t^2}{t^2(1+t^2)}$$
 in partial fractions. [4]

(ii) Use the substitution
$$t = \tan \frac{1}{2}x$$
 to show that
$$\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{\cos x}{1 - \cos x} dx = \sqrt{3} - 1 - \frac{1}{6}\pi.$$
 [5]

16. <u>June 2006 qu. 5</u>

(i) Express
$$t^2 + t + 1$$
 in the form $(t + a)^2 + b$. [1]

(ii) By using the substitution
$$\tan \frac{1}{2}x = t$$
, show that $\int_0^{\frac{1}{2}\pi} \frac{1}{2 + \sin x} dx = \frac{\sqrt{3}}{9}\pi$ [6]

[4]

17. June 2006 qu. 9

- (i) Given that $y = \sinh^{-1}x$, prove that $y = \ln(x + \sqrt{x^2 + 1})$ [3]
- (ii) It is given that, for non-negative integers n, $l_n = \int_0^a \sinh^n \theta \, d\theta$,

where
$$\alpha = \sinh^{-1} 1$$
. Show that $nI_n = \sqrt{2} - (n-1)I_{n-2}$, for $n \ge 2$. [6]

(iii) Evaluate I_4 , giving your answer in terms of $\sqrt{2}$ and logarithms. [4]

18. <u>Jan 2006 qu.6</u>

(i) It is given that, for non-negative integers *n*, $I_n = \int_0^1 e^{-x} x^n dx$.

Prove that, for
$$n \ge 1$$
, $I_n = nI_{n-1} - e^{-1}$ [4]

(ii) Evaluate I_3 , giving the answer in terms of e. [4]