FP2 Integration

1. June 2010 qu. 3

Use the substitution $t=\tan \frac{1}{2} x$ to show that $\quad \int_{0}^{\frac{1}{3} \pi} \frac{1}{1-\sin x} \mathrm{~d} x=1+\sqrt{3}$.
2. June 2010 qu. 5

It is given that, for $n \geq 0$,

$$
I_{n}=\int_{0}^{1 / 2}(1-2 x)^{n} \mathrm{e}^{x} \mathrm{~d} x
$$

(i) Prove that, for $n \geq 1, \quad I_{n}=2 n I_{n-1}-1$.
(ii) Find the exact value of I_{3}.
3. Jan 2010 qu. 6
(i) Express $\frac{4}{(1-x)(1+x)\left(1+x^{2}\right)}$ in partial fractions.
(ii) Show that $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{4}{1-x^{4}} \mathrm{~d} x=\ln \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)+\frac{1}{3} \pi$.
4. June 2009 qu. 5

It is given that $I=\int_{0}^{\frac{1}{2} \pi} \frac{\cos \theta}{1+\cos \theta} \mathrm{d} \theta$.
(i) By using the substitution $t=\tan \frac{1}{2} \theta$, show that $I=\int_{0}^{1}\left(\frac{2}{1+t^{2}}-1\right) \mathrm{d} t$.
(ii) Hence find I in terms of π.
5. June 2009 qu. 6

Given that $\quad \int_{0}^{1} \frac{1}{\sqrt{16+9 x^{2}}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{\sqrt{9+4 x^{2}}} \mathrm{~d} x=\ln a, \quad$ find the exact value of a.
6. June 2009 qu. 9
(i) It is given that, for non-negative integers $n, \quad I_{n}=\int_{0}^{\frac{1}{2} \pi} \sin ^{n} \theta \mathrm{~d} \theta$.

Show that, for $n \geq 2, \quad n I_{n}=(n-1) I_{n-2}$.
(ii) The equation of a curve, in polar coordinates, is $\quad r=\sin ^{3} \theta, \quad$ for $0 \leq \theta \leq \pi$.
(a) Find the equations of the tangents at the pole and sketch the curve.
(b) Find the exact area of the region enclosed by the curve.
7. Jan 2009 qu. 4
(i) By means of a suitable substitution, show that $\int \frac{x^{2}}{\sqrt{x^{2}-1}} \mathrm{~d} x$
can be transformed to $\int \cosh ^{2} \theta \mathrm{~d} \theta$.
(ii) Hence show that $\int \frac{x^{2}}{\sqrt{x^{2}-1}} \mathrm{~d} x=\frac{1}{2} x \sqrt{x^{2}-1}+\frac{1}{2} \cosh ^{-1} x+c$.
8. Jan 2009 qu. 9

A curve has equation $y=\frac{4 x-3 a}{2\left(x^{2}+a^{2}\right)}$, where a is a positive constant.
(i) Explain why the curve has no asymptotes parallel to the y-axis.
(ii) Find, in terms of a, the set of values of y for which there are no points on the curve.
(iii) Find the exact value of $\int_{a}^{2 a} \frac{4 x-3 a}{2\left(x^{2}+a^{2}\right)} \mathrm{d} x$, showing that it is independent of a.
9. June 2008 qu. 3

By using the substitution $t=\tan \frac{1}{2} x$, find the exact value of $\int_{0}^{\frac{1}{2} \pi} \frac{1}{2-\cos x} \mathrm{~d} x$,
giving the answer in terms of π.
10. June 2008 qu. 5

It is given that, for $n \geq 0, \quad I_{n}=\int_{0}^{\frac{1}{4} \pi} \tan ^{n} x \mathrm{~d} x$.
(i) By considering $I_{n}+I_{n-2}$, or otherwise, show that, for $n \geq 2, \quad(n-1)\left(I_{n}+I_{n-2}\right)=1$.
(ii) Find I_{4} in terms of π.
11. Jan 2008 qu. 7

It is given that, for integers $n \geq 1, \quad I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x$
(i) Use integration by parts to show that $I_{n}=2^{-n}+2 n \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} d x$
(ii) Show that $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$.
(iii) Find I_{2} in terms of π.
12. Jan 2008 qu. 9
(i) Prove that $\frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{\mathrm{x}^{2}-1}}$
(ii) Hence, or otherwise, find $\int \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d}$.
(iii) By means of a suitable substitution, find $\int \sqrt{4 x^{2}-1} \mathrm{~d} x$.
13. June 2007 qu. 5

It is given that, for non-negative integers $n, \quad \boldsymbol{I}_{\mathrm{n}}=\int_{1}^{\mathrm{e}}(\ln x)^{n} \mathrm{~d} x$.
(i) Show that, for $n \geq 1, \quad \boldsymbol{I}_{\mathrm{n}}=\mathrm{e}-n \boldsymbol{I}_{n-1}$.
(ii) Find I_{3} in terms of e.
14. Jan 2007 qu. 5

It is given that, for non-negative integers $n, \quad \boldsymbol{I}_{\mathrm{n}}=\int_{0}^{\frac{1}{2} \pi} x^{n} \cos x \mathrm{~d} x$
(i) Prove that, for $n \geq 2, \quad \boldsymbol{I}_{\mathrm{n}}=\left(\frac{1}{2} \pi\right)^{n}-n(n-1) \boldsymbol{I}_{n-2}$.
(ii) Find \boldsymbol{I}_{4} in terms of π.
15. Jan 2007 qu. 7
(i) Express $\frac{1-t^{2}}{t^{2}\left(1+t^{2}\right)}$ in partial fractions.
(ii) Use the substitution $t=\tan \frac{1}{2} x$ to show that $\int_{\frac{1}{3} \pi}^{\frac{1}{2} \pi} \frac{\cos x}{1-\cos x} \mathrm{~d} x=\sqrt{3}-1-\frac{1}{6} \pi$.
16. June 2006 qu. 5
(i) Express $t^{2}+t+1$ in the form $(t+a)^{2}+b$.
(ii) By using the substitution $\tan \frac{1}{2} x=t$, show that $\quad \int_{0}^{\frac{1}{2} \pi} \frac{1}{2+\sin x} \mathrm{~d} x=\frac{\sqrt{3}}{9} \pi$
17. June 2006 qu. 9
(i) Given that $y=\sinh ^{-1} x$, prove that $y=\ln \left(x+\sqrt{\mathrm{x}^{2}+1}\right)$
(ii) It is given that, for non-negative integers $n, \quad l_{\mathrm{n}}=\int_{0}^{a} \sinh ^{n} \theta \mathrm{~d} \theta$, where $\alpha=\sinh ^{-1} 1$. Show that $\quad n I_{n}=\sqrt{2}-(n-1) I_{n-2}$, for $n \geq 2$.
(iii) Evaluate I_{4}, giving your answer in terms of $\sqrt{2}$ and logarithms.
18. Jan 2006 qu. 6
(i) It is given that, for non-negative integers $n, \quad I_{n}=\int_{0}^{1} \mathrm{e}^{-x} x^{n} d x$.

Prove that, for $n \geq 1, \quad I_{n}=n I_{n-1}-\mathrm{e}^{-1}$
(ii) Evaluate I_{3}, giving the answer in terms of e.

